A high-performance Silicon Tracker for the CBM experiment at FAIR

J.M. Heuser, W. Müller, P. Senger (GSI Darmstadt) C. Müntz, J. Stroth (University of Frankfurt)

for the CBM Collaboration

PANIC05 – Santa Fe, New Mexico, October 2005

Overview:

- The future accelerator facility FAIR in Darmstadt
- The Compressed Baryonic Matter experiment
- The CBM Silicon Tracker
 - Performance requirements
 - Detector concept
 - R&D directions

Facility for Antiproton and Ion Research

FAIR: Future international accelerator complex at GSI, Darmstadt, Germany

→ see talk of L. Schmitt

Research program includes physics with:

- Radioactive ion beams:
 Structure of nuclei far from stability
- Anti-proton beams:
 Hadron spectroscopy, anti hydrogen
- Ion and laser induced plasmas:
 High energy density in matter
- High-energy nuclear collisions: Strongly interacting matter at high baryon densities

Compressed Baryonic Matter Experiment

Project Management:

Start of construction: 2007/2008

First beams: 2011 Full operation, **CBM**: 2015

CBM - Physics Motivation

Strong-interaction physics:

confinement, broken chiral symmetry, hadron masses.

CERN-SPS and RHIC:

- indications for a new state of matter: "Quark Gluon Plasma".
- Produced at high T and low μ_B .
- LHC: even higher T, lower μ_B.

QCD phase diagram:

- \rightarrow poorly known at low T, high μ_B :
- → new measurements at FAIR: with highest baryon densities, and with new probes!

⇒ CBM Experiment

Physics and Observables

Physics

In-medium modifications of hadrons:

Onset of chiral symmetry restoration

Indications for deconfinement:

Anomalous charmonium suppression?

Strangeness in matter:

Enhanced strangeness production

Critical point:

Event-by-event fluctuations

Observables

$$\rho$$
, ω , $\phi \rightarrow e^+e^- (\mu^+ \mu^-)$
open charm: D⁰, D[±]

$$D^0, D^{\pm}, J/\psi \rightarrow e^+e^- (\mu^+ \mu^-)$$

$$K, \Lambda, \Sigma, \Xi, \Omega$$

π, K

Open charm measurement:

One of the prime interests of CBM, one of the most difficult tasks!

Tracking challenge:

- up to 10⁷ Au+Au reactions/sec @ 25 GeV/nucleon
- ~ 1000 charged particles/event, up to ~100 tracks/cm²/event
- momentum measurement with resolution < 1%</p>
- secondary vertex reconstruction (≈ 30 μm)
- high speed data acquisition and trigger system

The CBM Experiment

- Conceptional Design -

■ Tracking, momentum measurement, vertex reconstruction: Exclusively with a Silicon Tracking System (STS)

The Silicon Tracking System

- Conceptional Geometry -

- Assume 7 planes
 - 2 or 3 thin pixel stations:
 - → secondary vertex detection (benchmark: open charm)
 - 4 or 5 <u>thin</u> strip stations:

 → tracking
- Acceptance: 50 to 500 mrad
- First plane:

z=5cm; size 25 cm²

Last plane:

z=100cm; size ~ 1 m²

Magnetic dipole field:

~ 1Tm, $\delta p/p$ <1% @ p=1 GeV

z = (20),40,60,80,100 cm

Challenge: Open Charm Reconstruction

Some hadronic decay modes:

D[±] (c
$$\tau$$
 = 317 μ m):
D⁺ \rightarrow K⁻ π ⁺ π ⁺ (9 ± 0.6%)
D⁰ (c τ = 124.4 μ m):
D⁰ \rightarrow K⁻ π ⁺ (3.9 ± 0.09%)

- ⇒ High-granularity sensors.
- \Rightarrow Thin tracking stations.

$$\Delta x \approx d_{1 \to 2} \frac{14 \text{ MeV}}{p} \sqrt{\frac{x}{X_0}}$$

$$\Delta x = 10 \text{ µm}; d_{1 \to 2} = 50 \text{ mm}$$

$$\frac{x}{X_0} = 0.18\% \text{ (}p = 3 \text{ GeV)}$$

Rare probe:

⇒ High level charm trigger.

Pixel Detectors for Vertexing

What kind of **pixel detectors** can do the job? Study of different detector types, characterized by their material budgets and pixel sizes:

 \Rightarrow (thin sensors ~ 100 μ m)

D⁰→ K⁻π⁺ reconstruction using MAPS

cut	optimized value	signal efficiency %	
χ^2 distance to the primary vertex	3.5 σ	53	
p-cut	1.0~GeV/c	72	
p_t -cut	0.5~GeV/c	61	
z-vertex cut	$250~\mu\mathrm{m}$	54	
D ⁰ pointing cut	30 μm	99	
geometric vertex χ^2 cut	≤5	91	
all cuts	-	10.4	

study by I. Vassiliev, GSI

~10 % efficiency

Pixel Detector Requirements

- Small pixels less than 25 x 25 μm²
- Thin less than ~100 µm silicon
- Radiation hard > 10¹⁴ n_{equiv}/cm²
- Fast readout interaction rate up to 10⁷/s

Such a detector does not exist!
Two possible R&D directions:

Monolithic Active Pixel Sensors (MAPS):

- small pixels: 25 x 25 μm²
- thin: standard 120 μm; study: 50 μm
- spatial resolution: ~3 μm
- too slow for CBM: ~ms/Mpixel full frame
- limited rad. hardness (bulk damage)
- ⇒ Improve r/o time, radiation tolerance.

<u>Hybrid Pixel Detectors (LHC type):</u>

- fast readout
- radiation hard
- too large pixels: $50 \text{ x} \sim 400 \text{ } \mu\text{m}^2$
- spatial resolution: ~15 (115) μm
- thick: standard > 350 μm
- ⇒ Reduce pixel size and thickness.

We started persuing the MAPS option, together with IReS Strasbourg. Alternative to consider: DEPFET sensors (MPI Munich).

R&D goals with MAPS: Radiation tolerance & readout speed

R&D goals with MAPS:

radiation tolerance: $\sim 10^{12} \rightarrow 10^{13} \, 1 \, \text{MeV n}_{\text{equiv.}}$

readout time: 10 μsec, column parallel r/o,

in reach in next years

Expected situation in CBM:

Fluence at 1st MAPS station:

~10 1-MeV n_{equiv.} per event

- → detector partly destroyed after 10¹² reactions
- → corresponds to ~10⁵ D mesons detected (decent measurement!)

Possible running conditions:

- a) ~1 day detector lifetime at 10⁷ reactions/s, 100 events piled up, or
- b) ~ 4 month detector lifetime at 10⁵ reactions/s, no pile-up events.

Consider also future developments: Hybrid pixels ~ 50x50 µm², few hundred µm thick, with higher radiation tolerance and faster readout.

Tracking in Silicon Strip Stations

First attempts:

Problem - High occupancy with many combinatorial hit points in silicon strip stations.

Recent approach:

Cellular automaton technique: Works!

Example:

4 strip stations + 3 MAPS stations

MAPS pile-up (events)	0	5	10	20	50	100	
Track category	Efficiency (%)						
Reference primary	96.37	96.08	95.84	95.15	93.79	91.47	
Ref. set	92.87	92.55	92.30	91.58	90.06	87.94	
All set	86.17	85.52	84.97	83.69	80.97	78.47	
Extra set	63.33	61.57	59.98	56.79	51.60	47.88	
Clone	0.00	0.00	0.00	0.00	0.00	0.00	
Ghost	2.47	3.59	4.55	6.53	9.85	13.33	

Tracking Requirements

■ Tracking with microstrip and pixel stations: Works despite of combinatorial hits and pile-up!

But: Noise, misalignment, detector inefficiencies etc. not taken into account!

■ Consider more tracking redundancy!

Comprehensive study on the way to optimize the Silicon Tracker's layout, including:

- more tracking stations,
- several strip geometries,
- additional (hybrid?) pixel detectors supporting the tracking, and
- detailed modeling of the detectors.

Pixel Detector – Module Concept

CMOS MAPS chips for CBM:

- size: ~0.5 x 1 cm²
- -~50% sensor, ~50% r/o.
- column readout in ~10 μs

CBM MAPS ladders with 4 or 5 "chips".

<u>Detector module</u>: BTeV inspired design

ladders mounted on either side of a substrate providing (active?) cooling.

Active cooling support:

- a carbon fiber structure with micro pipes? ~ 0.3% X₀
- glass or silicon wafers with buried micro channels? ~ 0.1-0.3% X₀

Strip Detector – Modules & Stations

Four detector stations:

built from a few wafer types.

Basic sensor elements:

200 μm thick silicon wafers. double-sided, rad-tolerant. 50 μm (25 μm?) strip pitch.

Inner: 6x4 cm
Middle: 6x12 cm
Outer: 6X20 cm

Study of:

- strip length, pitch, stereo angle (to reduce fake hits)
- single-sided sensor option
- location of read-out chips (on sensor / outside acceptance)

Summary

- **CBM** High-rate fixed-target heavy-ion experiment planned at FAIR/SIS300.
 - Strong-interaction physics, high baryon densities: Au+Au up to 35 GeV/nucl.
 - Challenge: Rare probes Open charm, low-mass vector mesons → di-leptons.

Experimental concept, new to heavy-ion physics:

- Tracking exclusively with a high-performance Silicon Tracker.
- Very important detector system, key to the physics of CBM.

Silicon Tracker performance requirements:

- Efficient tracking, high momentum resolution.
- High-resolution vertexing. Benchmark: Open charm.
 - → Small pixels, thin, radiation tolerant, fast r/o. **Beyond state-of-the-art!**

Detector R&D started:

- Thin, fine-pitch double-sided microstrip sensors (tracking).
- MAPS with improved radiation hardness, readout speed (vertexing).
- Readout electronics.

Open for new ideas!

http://www.gsi.de/fair/experiments/CBM/index_e.html

Discussion

Low Mass Dilepton Spectroscopy

Signal: vector meson decays

 $\rho, \omega, \phi \rightarrow e^+e^-$

Background:

 π^0 decay (365/event)

$$\pi^0 \to e^+e^-\gamma \ (1.2\%) \ \pi^0 \to \gamma\gamma \ 98.8\%)$$

conversion $\gamma \rightarrow e^+e^-$

Detector requirements:

- first stations with large acceptance
- tracking efficiency down to p = 0.1 GeV/c to suppress background
- detect conversion pairs:→ small pixels

Delta Electrons

Beam ions on target:

- ⇒ produce delta-rays
- ⇒ dominate occupancy when integrated over many events.
- ⇒ high local radiation damage, comparable to bulk damage.
- ⇒ hits spoil track finding
- ⇒ limits rate capability

Only way out:

Fast detector readout to avoid electron hit pile-up.

study by I. Vassiliev, GSI

 δ hits in 1st MAPS station: 1000 min. bias URQMD events, Au+Au 25 AGeV.

Data-Push Architecture, Data Flow

- Each detector channel detects autonomously all hits
 - → FEE design.
- An **absolute time stamp**, precise to a fraction of the sampling period, is associated with each hit.
- All hits are shipped to the next layer (usually data concentrators).
- Association of hits with events done later using time correlation.

Typical parameters:

(few % occupancy, 10⁷ interaction rate)

- some 100 kHz hit rate per channel
- few MByte/sec per channel
- whole CBM detector: ~ 1 Tbyte/sec

